
Armada: a Reference Model for an Evolving Database
System

Fabian Groffen Martin Kersten Stefan Manegold
Centrum voor Wiskunde en Informatica

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
{Fabian.Groffen,Martin.Kersten,Stefan.Manegold}@cwi.nl

Abstract: The data on the web, in digital libraries, in scientific repositories, etc. con-
tinues to grow at an increasing rate. Distribution is a key solution to overcome this
data explosion. However, existing solutions are mostly based on architectures with a
single point of failure.

In this paper, we present Armada, a model for a database architecture to handle
large data volumes. Armada assumes autonomy of sites, allowing for a decentralised
setup, where systems can largely work independently. Furthermore, a novel admin-
istration schema in Armada, based on lineage trails, allows for flexible adaptation to
the (query) work load in highly dynamic environments. The lineage trails capture the
metadata and its history. They form the basis to direct updates to the proper sites, to
break queries into multi-stage plans, and to provide a reference point for site consis-
tency. The lineage trails are managed in a purely distributed fashion, each Armada site
is responsible for their persistency and long term availability. They provide a minimal,
but sufficient basis to handle all distributed query processing tasks.

The analysis of the Armada reference architecture depicts a path for innovative re-
search at many levels of a DBMS. Challenging many conventional database assump-
tions and theories, it will eventually allow large databases to continue to grow and stay
flexible.

1 Introduction

Soon we face a common repository size scaling into petabytes, filled with data that needs
to be archived and processed. The rapidly improving technology cannot keep up with the
data growth rate, hence data processing becomes more and more an expensive and time-
consuming task. This problem is of major concern, since data processing is a core process
for many businesses and applications. Yet a real solution to the data growth problem has
to be found.

Scaling into multiple machines to process the data is currently successfully applied in
grids and distributed databases. However, the centralised scaling technique using a large
number of machines, is fragile from an availability point of view. All systems depend on
the availability of one. Moreover, this single point-of-failure can easily get overloaded,
thereby forming the bottleneck in serving a high workload.

The problem does not limit itself to large scale machines such as datagrid environments
in scientific settings [LF04]. Also mobile and ambient settings deal with a data explosion

problem. The ambient environment consists of a potentially large number of database-
empowered sensory systems, which learn and exchange information to reach a common
goal, e.g., increased experience without computers in sight [A+03]. Mobile environments
are characterised by a large number of clients sharing information through multiple data
brokers. The data ‘follows’ the device, which may be offline for lengthy periods [D+97].

Although in each environment the complexity can be controlled within the context of a
single application and strict separation of roles, current distributed database offerings stem
from an era where a limited number of always-on servers were prevalent. They lack func-
tionality in a number of areas to provide a general solution. A novel reference architecture
for a distributed database is urgently needed.

It should take site autonomy and volatility as both driving force and core feature of a
system architecture. A sole central broker to guide all interactions is a dead end for the
scalable solutions required. Instead, several sites may take such a role for a limited period
and only for part of the data space. To co-ordinate their efforts, ‘contractual’ arrangements
and economic models are needed. They should facilitate a ‘data market’ to ensure the
desired system behaviour and be flexible to cope with temporal and evolutionary changes.

Of course, the setting is not completely new. It is the natural step forward in the area
of highly distributed database technology. The underlying techniques are still based on
data fragmentation and data replication to break the database into manageable portions,
and query shipping versus data shipping for efficiency [OV99]. However, the volatile
setting calls for better solutions to keep track of the data whereabouts, their status, and
their lineage in the grand scheme. A portion of the database may be broken into pieces
and migrated to autonomous sites with little control other than powerful re-conciliation
algorithms when the pieces are fused in the future. The long liveness of such networks
makes legacy of information, e.g., out of date schemas and queries, a ground rule rather
than an exception. It calls for data management schemes optimised for incomplete and
only partially consistent information.

Within the Armada project we study the building blocks for an organic database. The
main contribution of this paper is a visionary description of the Armada model and its ar-
chitecture, designed to facilitate evolutionary growth in a distributed environment. It uses
data fragmentation, data replication and data fusion as the minimal basis for the lineage
of data blocks, that allows maximal autonomy of the nodes co-operating in a distributed
application.

Sites can easily join an Armada alliance by donating resources and taking responsibility
for a portion of the data space prescribed in the database schema. They can also leave the
alliance with minimal detrimental effect on its environment. The real size of the distributed
system and data locality is largely hidden from individual nodes. The Armada adminis-
tration allows for localisation of data without need for a central entity that becomes a
bottleneck, single point-of-failure and hot-spot in busy systems.

The clients (applications) are put back into the loop to steer query processing and dis-
tributed transaction management. Common client policies can be captured in scenarios
managed by a middleware software layer, but the autonomy of the Armada sites ultimately
relies on co-operative clients as well.

The remainder of the paper is structured as follows. Section 2 introduces the Armada
model, its notation and operations. The realisation of the model in terms of an architec-
tural overview is presented in Section 3. The effect of lineage trails on query processing
is described in Section 4. A sample embedding of the Armada model in the trends in dis-
tributed database systems is indicated in Section 5. We conclude and give a short outlook
in Section 6.

2 The Armada Model

The focus of this work is to create a reference model for a flexible, self-maintaining, effi-
cient distributed database architecture. To achieve this goal, we try to avoid the classical
bottlenecks that limit the efficiency of most existing and proposed architectures. These
bottlenecks can be seen as the two extreme alternatives of storing and maintaining the
metadata that is necessary to ensure correct and efficient handling of the actual data. Clas-
sical designs on the one end of the spectrum require a centralised server that holds all
metadata, and hence forms a hotspot. The central server is accessed to lookup or update
metadata for both operations that query/update the actual data and operations that change
the structure of the system at large. The latter involves addition or removal of nodes and/or
reorganisation of the data for load balancing purposes. It creates a bottleneck that limits
the overall performance and scalability of such systems.

Designs on the opposite end of the spectrum avoid this hotspot by fully replicating all
metadata. Such designs have to rely on the consistency of the replicated metadata, and
hence, each structural change requires the (synchronised) update on all nodes in the sys-
tem. Because all metadata is available locally, data operations are cheaper, but it signif-
icantly increases the price of structural operations, prohibiting efficient dynamic changes
of the data distribution.

With the Armada model, we aim at finding a balance between these two extremes. On the
one hand, Armada does not come with a centralised server, and thus avoids the bottleneck
of metadata lookups. On the other hand, Armada does not require to replicate all metadata
on all nodes. Instead, Armada finds a compromise by replicating metadata partially only,
and being able to cope with incomplete or stale metadata. Obviously, each node holds
its own local metadata, e.g., schema information about the portion of the database stored,
and keeps it up-to-date. In addition, it holds some remote metadata, i.e., information from
nodes in its vicinity. To limit maintenance overhead, the idea is to limit remote updates
of metadata to those nodes that exchange data due to structural updates. Thus, remote
metadata is not necessarily kept up-to-date at all times. Rather, an Armada-node assumes
that its remote metadata is an approximation or a past snapshot of the situation of a remote
node.

The inspiration for our novel reference model comes from the Armada analogy. An
Armada is a fleet of ships, that forms a unity although each ship has a captain who is
sovereign. The Armada model reflects this property in a minimal set of relations between
the captains of the ships. Each ship has cargo (data) stored in barrels (boxes) that are ad-

dressed by cargo documents (trails) kept by the captain. A captain can repackage the cargo
on his ship, and/or hand over (parts of) his cargo to one or more other ships in the Armada
(cloning, chunking). Repackaging may also occur if barrels are empty or only partially
used, such that multiple barrels are put in one (combining). The cargo documents describe
the content of each barrel as well as the lineage of the respective cargo. A captain keeps
one cargo document for each barrel he has aboard his ship. When handing over cargo to
other ships, the respective cargo documents are duplicated; the original copy stays with the
captain on the old ship and the other one is attached to the barrel on the new ship. Thus,
each captain does not only know what cargo his ship currently carries, but also where he
sent the cargo that he once had aboard, and where any cargo he ever transported came
from. In fact, the cargo documents kept on each ship provide sufficient information to
allow the captain to locate any cargo item in the whole Armada 1.

In the remainder of this section, we will briefly formalise the key components of the Ar-
mada model. We start by introducing the basic notation, terms, and definitions that make
up the ‘static’ part of the Armada model, i.e., the part that is used to describe how the meta-
data is represented. After that, we proceed with the ‘dynamic’ part that models operations
to perform structural changes on the Armada.

The goal of this work is to establish the Armada model as a generic framework for dis-
tributed database architectures. Hence, discussion of actual instantiations of the model,
like strategies as to when, why and how to perform structural changes, is beyond the scope
of this paper.

2.1 Notation, Terms and Definitions

We informally introduce the term (data) box to refer to the portion of the data that is hosted
at a site. We assume that the content of a box can be described by an arbitrary function g.
The actual specification of such function is left to the instantiation of a specific Armada
system. In the course of this section, we will provide some constraints for such functions.
Section 3.2 will discuss these functions in more detail and give some simple examples.

Further, we use the term structural operations to refer to operations that create and modify
the data distribution across sites, i.e., operations that replicate, (re-)fragment or merge
portions of the data. Data boxes form the entities that these structural operations operate
on.

DEF. 1 Be B′
i,B

′
i+1, . . . ,B

′
i+n existing boxes in an Armada system with functions g′i,

g′i+1, . . . ,g
′
i+n describing the content of each box. A structural operation o operates on one

or more boxes B′
i,B

′
i+1, . . . ,B

′
i+n and produces one or more new boxes B j,B j+1, . . . ,B j+m

with functions g j,g j+1, . . . ,g j+m describing the content of these new boxes. A structural
operation cannot generate new data, but must not “loose” any data, either. Hence, we

1The trail administration for each box is only valid at the time it is created. Afterwards, its references to
successors may be outdated. For the site hosting the box this does mean, however, that it can reach the rest of the
Armada through the sites it knows as stored in the trails, even though that might not be the most up-to-date state.

require that
g j ∪g j+1 ∪ ·· ·∪g j+m = g′i ∪g′i+1 ∪ ·· ·∪g′i+n .

Inspired by the cargo documents of the Armada analogy, we introduce lineage steps and
lineage trails to store and administer metadata. A lineage step captures the logistic infor-
mation of applying a structural operation to a box:

g, the function that is applied (and hence describes the content of the new box),
S, the site that the new box is shipped to, and
B, the identifier of the new box (for the convenience of later reference).

DEF. 2 A lineage step s = [g , S]:B is a composition that identifies the application of
a structural operation, resulting in a new box B on site S with function g describing the
content of the new box. The box B′ that s is applied to is identified by the lineage trail T ′

that s is appended to (see below).

Each box in the Armada is uniquely identified by a lineage trail that captures the whole
history of its data.

DEF. 3 A lineage trail, or trail for short, T = s1.s2. · · · .sl is a sequence of l ∈ N lineage
steps. With sl = [g , S]:B , T identifies box B on site S.

DEF. 4 Be B′′, B′, and B boxes on sites S′′, S′, S with their content described by functions
g′′, g′, g, respectively. Further be B′′, B′, and B identified by the trails T ′′,
T ′ = T ′′. [g′ , S′]:B′ and T = T ′. [g , S]:B , respectively. We call

T ′′ a predecessor trail of box B′,
s′ = [g′ , S′]:B′ the local step of box B′,
T ′ = T ′′.s′ a local trail of box B′,
s = [g , S]:B a successor step of box B′,

and analogously for boxes B′′ and B.

The metadata maintained and stored for each box consists of a set of predecessor trails,
exactly one local step, and a (possibly empty) set of successor steps. The predecessor trails
represent the box’ heritage. The local step describes the box itself, and the successor steps
point to the box’ offspring. The predecessor trails and local step are set upon creation of a
box, while the successor steps are only set once a box participates in a structural operation.

We assume that a structural operation (logically) removes all the data from its input boxes
(transferring it to the newly created boxes), and destroys the input boxes. Only the re-
spective metadata (lineage) is kept. This assumption relieves us from the need to consider
different versions of each box, and thus helps to simplify the model. The assumption does
not limit the generality of the model. In a practical implementation, this does not neces-
sarily require a (physical) copy of all data with each structural operation. Instead, simply
renaming the box can be sufficient.

To simplify the presentation, we will omit the set notation whenever a set of trails is empty
or contains only one trail. In the first case, we simply omit the empty trails set; in the latter
case, we depict the only element as singleton. Thus, the metadata for boxes B′′, B′ and B
of Definition 4 is depicted as follows:

pre loc suc
T ′′ = T ′′′ . [g′′, S′′]:B′′ ; [g′ , S′]:B′

T ′ = T ′′ . [g′ , S′]:B′ ; [g , S]:B
T = T ′ . [g , S]:B ;

The set of successor steps is empty for all boxes to which no structural operation has been
applied yet, i.e., all boxes that physically exist and store data. The set of predecessor trails
is empty for one box in an Armada, the origin.

DEF. 5 An Armada instance is born as a single initial box Bo. We call Bo the origin of
the Armada instance. Obviously, the origin has no predecessor trails. Further, since no
structural operation is applied to create the origin, there is no function that describes
(restricts) Bo’s content. We indicate this by % in Bo’s local step:

To = [%, So]:Bo .

2.2 Structural Operations

To let an Armada evolve from the origin, we consider the following three structural oper-
ations.

Replication: the clone operation

DEF. 6 The clone operation operates on one box B′ with function g′ and generates one or
more new boxes B j, . . . ,B j+m that all contain a copy of B′’s data. Hence, their functions
r j, . . . ,r j+m are all identical to g′.

Replicating a data box is the action of copying its content to a new location. We call it
the clone operation, denoted by function r. Consider the following example of cloning the
origin box Bo:

To = [%, S1]:Bo ;
{

[r , S1]:B1
[r , S2]:B2

T1 = [%, S1]:Bo . [r , S1]:B1 ;
T2 = [%, S1]:Bo . [r , S2]:B2 ;

In this example, the origin has two successors, B1 and B2, which themselves have no
successors.

Following Definition 6 the number of new boxes produced can also be a single one.
Strictly, this is no cloning operation any more: since the original box is (logically) de-
stroyed after the cloning, its data is not replicated, but rather moved to a single new loca-
tion. However, there is no reason to prohibit this in the model.

Although we use different site identifiers for the two new boxes in the above example, it
is perfectly sound with the model to produce two (or more) clones of a box on the same
site. The question, whether this is reasonable in practice, is not relevant in the context of a
reference model.

Fragmentation: the chunk operation

DEF. 7 The chunk2 operation operates on one box B′ with function g′ and generates one
or more new boxes B j, . . . ,B j+m that all contain a fraction of B′’s data. We require that
all fractions are disjunct, but no data is lost, i.e., the following must hold for new boxes’
functions:

f j ∪·· ·∪ f j+m = g′ and ∀k,l∈{ j,..., j+m},k,l : fk ∩ fl = /0 .

Fragmenting data means it gets spread out over multiple boxes. We call this the chunk
operation, denoted by functions f , f ′, f ′′, Consider the following example of chunking
the origin box Bo:

To = [%, S1]:Bo ;
{

[f , S1]:B1
[f ′ , S2]:B2

T1 = [%, S1]:Bo . [f , S1]:B1 ;
T2 = [%, S1]:Bo . [f ′ , S2]:B2 ;

The origin has been chunked in two, using chunk functions f and f ′. Like with cloning,
in case there is only one result box, a move operation is effectively being executed.

Merging: the combine operation

DEF. 8 The combine operation operates on one or more boxes B′
i,B

′
i+1, . . . ,B

′
i+n with

functions g′i,g
′
i+1, . . . ,g

′
i+n, and produces a single new box B that combines all the data of

the input boxes. The produced box’ function m spans the domain of g′i ∪g′i+1 ∪·· ·∪g′i+n.

While cloning and chunking are growing operators, the combine operation is a shrink
operation. Applying it to a number of boxes merges them into one. However, this operation
is not restricted to acting as an inverse-operation to the clone and chunk operations, i.e., re-
constructing a previously cloned or chunked box. Our model allows to apply the combine
operation to an arbitrary set of boxes. This is depicted in the following example, where
a clone (B4) and a chunk (B6) are combined into the a new box (B9), creating a duplicate
free combination of the inputs’ data.

2We felt free to ‘invent’ this verb.

T4 = T3 . [r , S1]:B4 ; [m , S1]:B9
T6 = T2 . [f ′′, S2]:B6 ; [m , S1]:B9

T9 =
T4
T6

}
. [m , S1]:B9 ;

Again, if there is just one box merged, the result is a semantical move of data.

2.3 An Armada Database

In practice, databases based on the Armada model evolve over time quickly. For many
reasons, e.g., resource limits, boxes are the target of chunk and clone operations. An
illustrative example of a database with 5 boxes is shown below.

To = [%, S1]:Bo ;
{

[f1, S1]:B1
[f ′1, S2]:B2

T1 = To . [f ′1, S1]:B1 ;
{

[f2, S1]:B3
[f ′2, S3]:B4

T2 = To . [f1, S2]:B2 ;
T3 = T1 . [f2, S1]:B3 ;
T4 = T1 . [f ′2, S3]:B4 ;

2 5 7 2312 1

�
�
�

�
�
�

�
�
�

�
�
�

7 12 23 72 24 11 2 5 1 7 12 11 �
�
�

�
�
�

23 72 24 16

2 5 1

[%, S1]:Bo

[0 . . .∞)

(a) the origin overflows when inserting 1

[%, S1]:Bo

[0 . . .∞)

@@ (5 . . .∞)
[f ′1, S1]:B1 [f1, S2]:B2

@@ [0 . . .5]

(b) box B1 overflows when inserting 11

[%, S1]:Bo

[0 . . .∞)

@@ (5 . . .∞)
[f ′1, S1]:B1 [f1, S2]:B2

@@ [0 . . .5]

��
@@ (5 . . .12]
[f2, S1]:B3 [f ′2, S3]:B4

�� @@ (12 . . .∞)

(c) the final state of the Armada

Figure 1: Sample Armada with 5 boxes.

In this example, we only use fragmentation functions to spread the data in the Armada
over 5 boxes. Each box is hosted on a separate site for ease of presentation. The origin

box Bo was first chunked into boxes B1 and B2. The first of these two children, B1 is
chunked again, resulting in boxes B3 and B4. The evolutionary steps are graphically shown
in Figure 1 using symbols which indicate the coverage of the functions applied in the
operations on the boxes. The symbol ‘ ’ is used to represent the data at the origin of the
Armada, in box Bo. The other symbols; ‘ @@ ’, ‘ @@ ’, ‘ ��

@@ ’ and ‘ �� @@ ’ represent pieces of the
origin box. Note that the symbols equally divide the original square symbol. This is of
course only a drawing issue, which is not necessarily true for the fragmentation functions
being used.

For this example, we describe how the tree from Figure 1 is built over time by inserting
data into the Armada. In the initial situation, depicted in Figure 1a, only Bo exists on site
S1. For the sake of the example, the boxes store simple integer values. Each box has a
fixed capacity of 5 of such integers. Normally this capacity is determined by the site that
hosts the boxes and the size of the data items, but for the sake of clarity we use these fixed
sizes. The data to be inserted in the Armada, in order, is for the example:

D = {2,5,7,12,23, 1,72,24,11,16}

Since there only fit five integers in each box, the origin Bo consists of D(Bo)= {2,5,7,12,23}
when the next integer, 1, is attempted to be inserted. Since it does not fit, a chunk opera-
tion is performed. In our example, we split equally, which results in D(B1) = {2,5,1} and
D(B2) = {7,12,23}. The fragmentation function f1 used here selects the range [0 . . .5].
The function f ′1 selects the complement of f1: (5 . . .∞). Beware, this decision is taken at
site S1 in ‘full autonomy’, it is not inherent to the algorithm.

In Figure 1b, the state of the Armada after the first chunk operation is depicted. As can be
seen, the data from the origin box Bo has been moved to boxes B1 and B2. Note that the
order of the items in the example is maintained, but this is not a restriction of the Armada
model. The only restriction on the boxes is that each box only holds data that matches its
respective local trail description.

Continuing the insertion of values, now the right box has to be searched. Inserting the
values 72 and 24 ends up in box B1. The origin box Bo is not active any more, and will
redirect if being consulted. Since it knows the functions of its successors, it can easily
tell that both values fit in the (5 . . .∞) range of B1

3. Also the next integer, 11, fits in B1’s
range, but since the box is full, a chunk operation has to be performed again. The result
of this chunk operation is depicted in Figure 1c. Again the data values have been equally
split over the two new boxes B3 and B4. The last integer to insert, 16, ends up in box B4
guided by the ranges associated with the active boxes B2, B3 and B4.

2.4 Localisation

Successful and efficient localisation of the box(es) that (potentially) hold the requested
data is a vital prerequisite to allow query execution on an Armada system. Using the pre-
vious example, we will briefly sketch that the lineage trails provide sufficient information

3A more detailed description of how this redirection is decided upon is given in Section 2.4.

to find the responsible box(es) for the requested data.

Note that when clients contact the Armada, they are contacting one (or more) of its sites
that host boxes, not the boxes themselves. The example from Figure 1c describes 5 boxes
that are in fact hosted on 3 sites, S1, S2 and S3.

Suppose a client c has a query which is answered by �� @@ , say 42. c can now contact any of
the sites from the Armada. Any site that cannot handle the request by c, will redirect it to
the site that it knows has more specific information. The simplest case is when c connects
directly to S3. On S3, only trail T4 is available. This trail defines the box responsible for the
data fragment (12 . . .∞). There are no successors for S3 available, meaning S3 is active.
Trail T4 tells that the query for �� @@ can be answered. In our example this means that S3 can
tell c that there is no 42 in the Armada.

In case c connects to S1, S1 has three trails at its disposal: To, T1 and T3, where T3 is
the most “specific” trail. Evaluating from that trail, c’s query cannot be answered, hence
a redirect to the predecessor box has to be made. (There are no successors to consider
for T3.) Since the predecessor box T1 is on the same site, the redirection can be done
internally, resulting in no client redirection. Evaluating T1, c’s query can be answered, but
since box B1 is no longer active, it must be answered by one of its successors. In this case
by successor T4, which is located on site S3. Hence, a redirect to c for site S3 is sent. As
obvious from the previous case, at S3, c retrieves the answer to its query.

Finally, c can decide to connect to S2. At S2, the trail T2 is available. This trail does not
cover the query �� @@ , so neither would its successors do, if any. Hence, a redirect to the
predecessor box is sent. This box, the origin Bo, is located on S1. Since S1 does not (have
to) know that c was redirected for box Bo, it just evaluates c’s query like it did in the case
above, with the same result.

So far we only considered a query which was fully contained in a single box: the lookup of
the value 42. Instead of this point query, a range query could be issued by c, that possibly
spans multiple boxes. Consider query ��AA which describes a range [10 . . .20]. Like in the
previous cases described, client c will end up at sites S1 and S3. Both sites will be able to
return a partial answer to the query and an additional redirect in order to get the remainder
of the answer. Here, the client has to deal with the data being spread over two sites.

It must be noted that for this example we choose to have three different physical sites.
This is merely for explanatory purposes. It is very well possible for every box to be on its
own site, or for all boxes to be on the same site. There are no inherent restrictions in the
Armada model as to where boxes are hosted.

3 Architecture Overview

In this section, we illustrate the formation of an Armada, the role of the database schema,
and decisions taken by the sites regarding responsibilities for data management.

3.1 The Alliance

A collection of sites S provides the context to distribute the database. At any time, only
a subset of S is actually involved in the Armada, i.e., those sites containing boxes and
associated lineage trails. The subset of participating sites is called the Armada alliance, or
A ⊆ S . The starting point for an alliance is a single site A = {So}, i.e., the origin.

The alliance A should be extended before a clone, chunk, or combine operation can deposit
the result boxes at a new site. A site Y can only be invited to join the alliance if a member
of the alliance is willing to co-operate with Y . For that, Y should adhere to the Armada’s
Code of Conduct:

DEF. 9 A site Y becomes a member of the Armada alliance A iff
• it is nominated by an existing member,
• it donates resources to manage boxes,
• it keeps a permanent record of its lineage trails,
• it co-operates and faithfully answers queries,
• its existence may be published to other members.

Admission of sites is broadcasted to all members asynchronously or on a need-to-know
basis. Due to update propagation delays, at any time a member only knows a portion of
the alliance A by inspection of the lineage trails it receives together with new boxes.

A technical issue is to publish the site identities S of possible new members. In line with
the dynamic nature envisioned for Armada, every site X knows only a fraction SX ⊆ A
and should be told about possibly new members explicitly by intervention from an outside
authority 4.

Selection of candidate sites to join the Armada is initiated by a member when it can no
longer fully co-operate due to resource constraints. Given the Code of Conduct, an open
call is issued to sites SX for bidding on solving a quantified resource problem, e.g., lack of
storage or CPU units.

DEF. 10 A bid(X ,CPU,MEMORY) is an operation executed by site X ∈ S and returns
{t ∈ R|0 ≤ t < 1}, a positive real number representing the value (eagerness) of X to par-
ticipate with a minimum of CPU and MEMORY units.

DEF. 11 Let X ∈ A be a site with a wish to offload (CPU, MEMORY) units. It issues bid
requests to S ′ ⊂ S and grants the bid from site Y ∈ S ′ which supplies the most satisfying
bid.

Calling for additional help by a site X ∈ A may lead to a situation that no other site Y ∈ S
is willing or able to make resources available, effectively passing back the problem to the
site X . This failure cannot be resolved at X . Instead, the process of finding, negotiating

4New members can be searched using a client application or could be hardwired in the implementation, e.g.,
using an IP-range.

and bidding is then pushed back to the client by rejecting queries due to resource overload.
The client could attempt alternative sites to receive the attention needed, or should contact
an outside authority to increase the basis from which Armada members are recruited. In
our analogy, any Armada is limited in the ships it can deploy. An extension requires a
governmental approval (and new taxation).

3.2 Chunk Functions

Extending the Armada (or offloading work to others) is grounded in the ability to fragment
and replicate portions of the database. The Armada model captures the offloaded work in
the lineage trail as the clone, combine and chunk functions. The operations are precisely
administered, such that at any time the lineage trail can be re-interpreted to assess the past
decisions.

The chunk function should satisfy the correctness criteria for distributed relational sys-
tems [OV99]: the function f is lossless, i.e., each possible data element can be associated
with either box B f or B f ′ , it should designate disjoint portions B f ∩B f ′ = /0, and the origi-
nal box can be reconstructed from its components.

Note that a chunk function can be generalised to partition a space into multiple disjoint
components. This way it encompasses all known techniques from physical distributed
database design. The function f could be a simple hash or range distribution function,
which derives the destination boxes based on the key value. Scalable distributed data
structures have been developed to support the evolutionary growth as well [L+04]. Al-
ternatively, the function f is a deterministic algorithm, solely based on time and location
invariant data properties.

It should be stressed that the nature of the chunk function can be decided upon at each site
autonomously and it may differ for each box being considered. The consequence is that
chunking or cloning a box leads to a local datamanagement optima, ignoring the goal of
an Armada at large to form a coherent and effective distributed system. Autonomy in this
respect calls for a brokerage service, e.g., a client application, to mediate between sites to
balance their tasks.

3.3 Box Updates

A client application c interacts with the Armada sites on a one-by-one basis. It is told
the identity of at least one Armada site X using publicly known information or through
an authoritative outsider. There is no a priori relationship; a client may pick any member
from the alliance.

The client c can issue updates to the Armada using site X as a starting point. If X con-
tains the boxes holding the data of interest, updates follow the traditional local database
patterns. However, if the lineage trails carried at X denote existence of cloned versions or

the updates have effect on remote boxes, it tells the client. Unlike traditional distributed
systems, it does not mediate directly in propagation of the update requests.

For example, for cloned boxes it returns a list of sites the client should contact to ensure
global consistency in due time. To implement this policy any of the known database update
replication schemes can be used. They can even be implemented with a few a priori defined
Armada agents, who take over the role of the clients’ responsibility.

Beware that this client-Armada relationship is built on mutual trust and persistency. If
the client forfeits its duty to forward updates to related sites, the outcome could be an
inconsistent database. It does not render the Armada useless, but may affect local decisions
taken in the future. It mimics reality where decisions are mostly based on locally consistent
information only.

3.4 Armada Heterogeneity

A real Armada consists of different types of ships. To name a few famous Dutch kinds, the
galjoten, hoekers and spiegelschepen 5 all have different capabilities on storage, speed or
defence. As such, different ships have different functionalities and responsibilities within
the Armada. Similarly, the sites in our Armada, can be of different types. Not only their re-
sources differ, but also their connection to the rest of the Armada, and the kind of data stor-
age engine they run. Actual storage may be done in a flat (log) file, or in an SQL database
such as PostgreSQL, IBM DB2, Oracle, MySQL, etc., which gives different properties to
the sites.

The analogy goes further when it concerns the data boxes. Much like ships carry both bar-
rels, boxes, and crates, an Armada site carries data boxes of different flavours. Some might
be designed to store particular data items, e.g., blobs, multimedia images or structured
documents, while others are organised around the physical boundary conditions, e.g., disk
block sizes. In all situations, the amount of lineage trail information is considered small
compared to the box itself. Thereby avoiding a bureaucracy.

4 Query Processing

The loose affiliation and strong autonomy of sites, combined with the pivotal role of the
client calls for a fresh look on distributed query processing. In such a vision, any form of
system induced centralised control over query execution is ideally removed.

In this section, we describe the mapping of the Armada reference model to a relational
context and illustrate the challenges for query processing.

5See http://www.holland.com/voc/gb/fleet/ships/index.html for more information on these ships.

4.1 Relational Lineage Trails

The Armada reference model does not a priori prescribe the data model and query lan-
guage. However, once we deploy it in the context of a real application setting, it has to
be fixed to delimit the scope. The first refinement of the Armada model is geared towards
relational systems, which calls for a redefinition of boxes and lineage trails.

DEF. 12 A relational box Bi in a lineage trail Ti is a box whose content is covered by the
relational schema DB attached to the origin site DB = schema(origin(Ti)).

The data in the box should satisfy traditional key and domain constraints. However, the
role of referential and table constraints should be reconsidered in the light of the Armada
autonomy. A discussion on this topic is left out of this paper for space reasons.

DEF. 13 A relational lineage trail is an Armada lineage trail Ti whose chunk, clone, and
combine functions f ,r,m are limited to relational algebra queries over the schema DB
attached to the origin site, DB = schema(origin(Ti)).

This definition emphasises the role of the origin site. Its schema determines the scope of
the data space managed. All boxes managed by the Armada can be phrased as relational
queries, but care should be taken to limit the expressiveness of the query language to also
ensure a lossless Armada. The chunk function f is a simple SELECT-FROM-WHERE query,
such that the key attributes are retained in the derived boxes.

A relational lineage trail can be seen as a small snapshot of a relational catalog. It de-
scribes the data retained in boxes in terms of a compound view over the origin schema.
Furthermore, the relational trails contain descriptions of database views once managed at
remote sites. It forms a roadmap for referral queries and decomposition into a distributed
query.

4.2 Single Box Queries

Finding a box with data of interest in the Armada remains the most important query. How-
ever, unlike P2P schemes, the whereabouts of the relevant box are not administered cen-
trally; its location may even frequently change. 6

A client can send a query Q to any participating site where it can be validated against the
database schema for correctness using any of the relational trails. Subsequently, the query
is replaced by a union-query Q = Q0∪·· ·∪Qk such that term Qi represents a sub-query to
be solved by site Si in the Armada. Splitting is based on all lineage trails known locally.
Algorithmically it requires a search for the union query with all known sites holding boxes

6We consider the hash function in a Chord to be globally known, hence based on a central copy of this
function.

of interest. Given the nature of the successor trails known at the boxes, a query might be
broken up again when it turns out that the box it refers to was chunked afterwards.

Unlike traditional distributed databases, the subqueries Qi, . . . ,Qn are not immediately
forwarded to their destination site. Instead a query referral list Ql = [(Qi,Si)] is built and
sent back to the client for further consideration. To retrieve the answer the client should
explicitly ask the sites for their result sets for the given query Qi. It may iterate through
the referral list, asking each site in turn to deliver it, or it may broadcast the complete list
at once. This control also gives the opportunity to the client to abort query processing after
each sub query issued. In all cases, the client is responsible to merge the results obtained
and to deal with the interaction of the sites. Connections to sites may time out. Sites may
appear to be unreachable, reject connections or tell they are too busy. In case of clones,
this may even result in a redirect to one of the other clones. It is the client’s task to prevent
an endless loop to arise if both clones appear to be too busy to handle the request of the
client.

As a remedy against unavailable or too busy sites, a client might inspect the lineage trails
to see if there are any clones in the lineage. Finding a clone may result in getting the data
from another ‘branch’ in the Armada, if available.

The autonomy of the Armada sites and its evolution complicate this scheme. Consider
query Qi arrived at site Si for evaluation. Then a few cases should be considered.

1. The site Si accepts the query and can handle it locally. A result set is prepared and
shipped to the client.

2. The site Si accepts the query, but produces a partial answer and an update for the
query referral list.

3. The site Si runs out of resources and is not able to respond to the query request.
It returns the query to the client, which should decide on what to do. If the site
knows about other sites that could possibly handle the query (partially), it also sends
an alternative update for the referral list. Especially for clones this is a standard
procedure.

4. The site Si detects that the boxes of interest have been relocated. It sends a new
query referral list back to the client.

5. The site Si runs out of resources and decides to expand the Armada with new sites.
The query is replaced by a new query referral list afterwards and sent back.

6. The site Si breaks the connection after a partial result has been shipped. The client
should re-submit the query.

7. The client breaks the connection with site Si, which triggers a local transaction abort.

The scheme proposed shifts the burden of distributed query processing partly to the client.
The rationale is that the client ultimately resolves conflicts, e.g., time to wait for an answer
and ‘money’ to spend. An actual client implementation may be based on a library with a
priori defined scenarios for dealing with the query referrals.

A tricky part is detection of duplicate results, for it may potentially call a very large local
memory at the client side. The solution sought is based on keeping the lineage trails
attached to the referral list. It can be used to identify boxes with duplicate information
(clones). Judicious execution of the referral queries and early diversion of result sets that
are known to hold duplicates are the tools for the client to deal with this problem.

4.3 Query Evaluation

Query optimisation within Armada takes on a different flavour as well. Known techniques
for semantic and symbolic query optimisation still apply. However, reducing the amount
of data shipped or minimising the response time cannot a priori be the prime target. When
a task is taken from the referral list there is still no guarantee on the responsiveness of the
site being addressed. Therefore, ruling out many query execution plans upfront, based on
cost estimations, is not an option.

The approach taken is based on the rationale that subqueries can only be solved if the
(partial) input data resides at a single site. It leads to the refinement of the query referral
list into a dependency graph, which captures the processing dependencies. The client
should obey these dependencies during query evaluation.

At each site, a subquery is evaluated and/or preparation steps are taken to bring boxes
together for the next step. Preparation involves a decision on cloning, chunking and com-
bining pieces at a site with ample resources available. It is a variation on our initial bidding
process. For querying we are interested in temporary resources only. After the result has
been produced and shipped to the client, the storage could become available for re-use.

The query bid request ask(Qi,Ti) involves the subquery Qi and associated lineage trails Ti.
It is sent to sites of interest for a quote on its fictive cost.

A site S can respond in different ways. It may accept the task and reserve resources for the
duration of the query. Or, it may propose to initiate an Armada re-organisation first, e.g.,
cloning, chunking and combining the operands. And finally, it may simply opt out.

The effect at the client is that query evaluation becomes highly dynamic and unpredictable.
Just-in-time decisions are taken on where data should be sent and what order of evaluation
is most effective. The benefit is that the query plan can be stopped at any time to avoid
spending resources on less interesting results.

Furthermore, conceptually the result sets remain at their site of origin until the client ex-
plicitly releases the resources. The same holds for all intermediate results. The global
effect is that the Armada becomes polluted with temporary results. However, a site’s au-
tonomy will permit unilateral disposal, provided the box discarded can be reconstructed or
a referral query can be issued to recover it from a dump site.

5 Related Research

Research on federated/distributed database architectures has a long history. All major
DBMS suppliers provide technology to realise a distributed database. They are also op-
timised for a limited number of servers, e.g., running on a cluster computer composed
of several tens of processors with a NAS service. Wide area distributed databases ben-
efit from a plethora of publish/subscribe techniques, e.g., Oracle Streams [Tum04] and
Microsoft’s Message Queues [B+04b].

Close to Armada’s objectives is Mariposa [S+94]. This system aims for a distributed
setting based on fragments of data among autonomous systems. Unlike the envisaged
client interaction in Armada, Mariposa passes queries or data on to other sites it knows on
behalf of the actual client, resulting in a chain of dependent systems. Further on, location
of fragments is not really specified, whereas Armada has this embedded in its lineage
trails. The lineage information in Mariposa is used mainly for merging back previously
split fragments. Armada on the other hand, allows merging of any two or more boxes.

In recent years, two research trends in distributed databases have emerged: sensor network
databases and P2P systems. Sensor network databases are characterised by a large num-
ber of resource limited receptors at the edge of a network to collect mission critical data.
Prototypical building blocks are small ‘Motes’, a single-board-computer (SBC) equipped
with a limited memory, limited network capabilities, and limited energy, glued together
to realise a distributed information system to feed the upstream applications. On each
site, we find one or more sensors and an embedded SQL database engine for storage man-
agement and query processing [M+05, F+05, B+04a, A+05]. However, their underlying
architectures ignore the autonomy target set for Armada. In essence, they are built from
functionally scaled-down versions of relational database systems.

The focus of Peer-to-Peer systems is efficient query routing and localisation [P+04, MM02].
Armada differentiates from this approach in having a data centric view: the data, in terms
of boxes, filled with relations are aimed at evolutionary growth starting from a single node.
P2P techniques assume the data is already in place and numerous, usually in the form of
files, like in PIER [H+05]. Unlike P2P, Armada has functions that define how data is split
over a number of boxes, which allow for concise localisation of data.

Scalable distributed data structures (SDDS), a predecessor of P2P systems, use globally
known, but locally adaptive partitioning functions [L+04, KK00]. Also the client be-
haviour in SDDS implementations bears some similarity with the Armada approach. They
manage a cache with metadata to direct data lookups. The main difference with the Ar-
mada vision is its level of abstraction. SDDS solutions are focused on single key-based
retrieval. In our model, we extend the scope to the complete functionality of a database
system. Furthermore, the lineage trails capture the complete history of a box, something
not considered in an SDDS. It maintains the latest, locally consistent distribution status.

Over their life span, database systems experience a continuous change (usually growth)
of the amount of data stored. Likewise, usage patterns and workloads keep on changing.
For example, more recent data is often accessed more frequently than older data, creating
a “continuously moving access hotspot”. Classical distributed database architectures do

not provide any means to adapt to these changes automatically. Rather, increasing the
systems capacity (by adding additional nodes) and re-distributing the data to balance the
load are measures that have to be initiated and executed by some human DBA [OV99].
Additionally, client/server settings form the base of dealing with the work, thereby greatly
reducing the autonomy of the participating servers.

The area of self-managing and self-tuning databases limits itself by only advising the
DBA [R+02, Z+04] or only dealing with indices and materialised views [A+04] — the
metadata. Combinations of replication and fragmentation are not supported, and only on
the whole table data, where fragmentation is only horizontally applied. Armada, on the
other hand, can be considered a self-adaptive model to meet the environment requirements
and reconfigure when they change.

6 Conclusions and Outlook

Emerging applications based on large numbers of autonomous systems challenge the as-
sumptions of underlying traditional distributed database technology. The storage and pro-
cessing requirements encountered are often modest compared to the servers on which com-
mercial databases run. Instead, they stress the need for autonomy in managing a portion
of the database in a co-operative or P2P setting. The volatility of devices joining and leav-
ing the ensemble, calls for a fresh look on metadata management, query processing and
transaction semantics.

In this paper, we introduced Armada, a reference model and system architecture for dis-
tributed datamanagement. The research methodology is purposely focused on the intro-
duction of a concise model based on lineage trails. The exploratory description of the
envisioned architecture charters a rich research landscape ahead. The analogy of a real-
world Armada, a fleet of autonomous ships sailing under authoritative goal and charter,
provides the necessary insight in alternative solutions herewith no-go areas for distributed
database systems.

A simulator for the Armada model has been developed to experiment with large examples
and study the effect of lineage trail management. Its next incarnation provides quantitative
data on the robustness of the model against (deliberately) unavailability of physical sites.

Other priorities on the Armada research agenda include development of economic models
to steer the interaction between clients and Armada sites and fleet formation reorganisa-
tion. Finally, a real Armada system implementation based on existing database technology
should prove that the database community is ready to take its role in emerging domains.

References

[A+03] E. H. L. Aarts et al., editors. First European Symposium on Ambient Intelligence (EUSAI),
volume 2875 of LNCS, 2003.

[A+04] S. Agrawal et al. Database Tuning Advisor for Microsoft SQL Server 2005. In VLDB,
2004.

[A+05] D. J. Abadi et al. The Design of the Borealis Stream Processing Engine. In CIDR, 2005.

[B+04a] H. Balakrishnan et al. Retrospective on Aurora. VLDB Journal, 13(4), 2004.

[B+04b] S. Boyd et al. Pro MSMQ: Microsoft Message Queue Programming (Paperback). Apress,
2004.

[D+97] M. H. Dunham et al. A Mobile Transaction Model That Captures Both the Data and
Movement Behavior. Mobile Networks and Applications, 2(2), 1997.

[F+05] M. J. Franklin et al. Design Considerations for High Fan-In Systems: The HiFi Approach.
In CIDR, 2005.

[H+05] R. Huebsch et al. The Architecture of PIER: an Internet-Scale Query Processor. In CIDR,
2005.

[KK00] J. S Karlsson and M. L. Kersten. Omega-storage: A Self Organizing Muli-attribute Storage
Technique for Large Main Memories. In Australasian Database Conference, 2000.

[L+04] W. Litwin et al. LH*RS: A Highly Available Distributed Data Storage. In VLDB, 2004.

[LF04] D. T. Liu and M. J. Franklin. The Design of GridDB: A Data-Centric Overlay for the
Scientific Grid. In VLDB, 2004.

[M+05] S. Madden et al. TinyDB: an acquisitional query processing system for sensor networks.
ACM TODS, 30(1), 2005.

[MM02] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information System Based
on the XOR Metric. In International Workshop on Peer-to-Peer Systems, 2002.

[OV99] M. T. Özsu and P. Valduriez. Principles of distributed database systems. Prentice Hall,
1999.

[P+04] Y. Petrakis et al. On Using Histograms as Routing Indexes in Peer-to-Peer Systems. In
DBISP2P, 2004.

[R+02] J. Rao et al. Automating Physical Database Design in a Parallel Database. In SIGMOD,
2002.

[S+94] M. Stonebraker et al. Mariposa: A New Architecture for Distributed Data. In IEEE 10th
International Conference on Data Engineering, 1994.

[Tum04] M. Tumma. Oracle Streams: High Speed Replication and Data Sharing. Oracle In-Focus
Series, 2004.

[Z+04] D. C. Zilio et al. DB2 Design Advisor: Integrated Automatic Physical Database Design.
In VLDB, 2004.

